28 research outputs found

    AIDA directly connects sympathetic innervation to adaptive thermogenesis by UCP1

    Get PDF
    AIDA最早是由林圣彩教授团队首先鉴定和命名的。2007年林圣彩教授团队与孟安明院士团队合作发现AIDA在斑马鱼体轴发育中的功能(Rui, 2007)。2018年,林圣彩教授团队首次发现了AIDA在哺乳动物中的功能,即AIDA介导的内质网降解途径通过降解脂肪合成途径中的关键酶,而限制膳食脂肪在肠道的吸收这一内在抵御肥胖(Luo, 2018)。而本次成果揭示了AIDA在棕色脂肪组织中特定的功能。这些工作将AIDA引入了脂质应激代谢的重要环节,包括脂质吸收和依赖于脂质的产热过程。该论文的共同第一作者为生命科学学院博士生史猛和硕士生黄晓羽,林圣彩教授和林舒勇教授则为共同通讯作者。【Abstract】The sympathetic nervous system–catecholamine–uncoupling protein 1 (UCP1) axis plays an essential role in non-shivering adaptive thermogenesis. However, whether there exists a direct effector that physically connects catecholamine signalling to UCP1 in response to acute cold is unknown. Here we report that outer mitochondrial membrane-located AIDA is phosphorylated at S161 by the catecholamine-activated protein kinase A (PKA). Phosphorylated AIDA translocates to the intermembrane space, where it binds to and activates the uncoupling activity of UCP1 by promoting cysteine oxidation of UCP1.Adipocyte-specific depletion of AIDA abrogates UCP1-dependent thermogenesis, resulting in hypothermia during acute cold exposure. Re-expression of S161A-AIDA, unlike wild-type AIDA, fails to restore the acute cold response in Aida-knockout mice.The PKA–AIDA–UCP1 axis is highly conserved in mammals, including hibernators. Denervation of the sympathetic postganglionic fibres abolishes cold-induced AIDA-dependent thermogenesis. These findings uncover a direct mechanistic link between sympathetic input and UCP1-mediated adaptive thermogenesis.We thank Y. Li, E. Gnaiger, T. Kuwaki, J. R. B. Lighton, E. T. Chouchani and D. Jiang for technical instruction; X. Li and X.-D. Jiang (Core Facility of Biomedical, Xiamen University) for raising the p-S161-AIDA antibody; the Xiamen University Laboratory Animal Center for the mouse in vitro fertilization service and all the other members of S.C.L. laboratory for their technical assistance. This work was supported by grants from the National Key Research and Development Project of China (grant no. 2016YFA0502001) and the National Natural Science Foundation of China (grant nos 31822027, 31871168, 31690101, 91854208 and 82088102), the Fundamental Research Funds for the Central Universities (grant nos 20720190084 and 20720200069), Project ‘111’ sponsored by the State Bureau of Foreign Experts and Ministry of Education of China (grant no. BP2018017), the Youth Innovation Fund of Xiamen (grant no. 3502Z20206028), the Natural Science Foundation of Fujian Province of China (grant no. 2017J01364) and XMU Training Program of Innovation and Entrepreneurship for Undergraduates (grant no. 2019×0666). 该工作得到了厦门大学实验动物中心和生物医学学部仪器平台的重要协助和国家重点研究和发展项目,国家自然科学基金,厦门大学校长基金等的支持

    Molecular Dynamics-Assisted Design of High Temperature-Resistant Polyacrylamide/Poloxamer Interpenetrating Network Hydrogels

    No full text
    Polyacrylamide has promising applications in a wide variety of fields. However, conventional polyacrylamide is prone to hydrolysis and thermal degradation under high temperature conditions, resulting in a decrease in solution viscosity with increasing temperature, which limits its practical effect. Herein, combining molecular dynamics and practical experiments, we explored a facile and fast mixing strategy to enhance the thermal stability of polyacrylamide by adding common poloxamers to form the interpenetrating network hydrogel. The blending model of three synthetic polyacrylamides (cationic, anionic, and nonionic) and poloxamers was first established, and then the interaction process between them was simulated by all-atom molecular dynamics. In the results, it was found that the hydrogen bonding between the amide groups on all polymers and the oxygen-containing groups (ether and hydroxyl groups) on poloxamers is very strong, which may be the key to improve the high temperature resistance of the hydrogel. Subsequent rheological tests also showed that poloxamers can indeed significantly improve the stability and viscosity of nonionic polyacrylamide containing only amide groups at high temperatures and can maintain a high viscosity of 3550 mPa·S at 80 °C. Transmission electron microscopy further showed that the nonionic polyacrylamide/poloxamer mixture further formed an interpenetrating network structure. In addition, the Fourier transform infrared test also proved the existence of strong hydrogen bonding between the two polymers. This work provides a useful idea for improving the properties of polyacrylamide, especially for the design of high temperature materials for physical blending

    Boosted Charge Transfer in Twinborn α-(Mn2O3-MnO2) Heterostructures: Toward High-Rate and Ultralong-Life Zinc-Ion Batteries

    No full text
    Aqueous ZIBs are one of the most promising next-generation rechargeable batteries because of the high capacity, high hydrogen evolution overpotential, and chemically stable reversible plating/stripping of the zinc electrode in the mild aqueous electrolyte. However, there are limited cathode materials that can store Zn2+ reversibly with superior cycling and rate capability. Herein, hierarchically porous nanorods composed of twinborn α-(Mn2O3-MnO2) heterostructures are proposed as a robust cathode for Zn storage. Thanks to the hierarchically porous nanorod morphology and the abundant interface of the heterostructures involving a built-in electric field, the as-obtained twinborn α-(Mn2O3-MnO2) electrode delivers a high capacity of 170 mA h g-1 for 2000 cycles at 500 mA g-1 and shows an excellent rate capability of up to 1.5 A g-1 with a capacity of 124 mA h g-1. The inspiring results achieved exhibit the enormous potential of the high-performance heterostructure cathode for fast and stable ZIBs

    Chemically activated graphite enhanced oxygen reduction and power output in catalyst-free microbial fuel cells

    No full text
    In search of a cost effective cathode material for microbial fuel cells (MFCs), graphite was chemically treated with H3PO4, HNO3, ZnCl2, urea or melamine, and the effect of chemical activations on the oxygen reduction reaction (ORR) was examined. The performance of MFCs with activated graphite as the catalyst-free cathodes was then compared to those with untreated graphite. Results suggested that H3PO4 and HNO3 activations could improved ORR, showing the highest ORR activity in graphite treated with 14.62 M H3PO4 for 12 h at 30-50 °C. MFCs with H3PO4 and HNO3 activated graphite cathodes generated maximum power densities (7.9 W/m3 and 6.5 W/m3, respectively) 2.4 and 1.8 times higher than that of the untreated control. The chemical activation process involves just a simple immersion step, and it does not require heating, electrochemical process or expensive chemicals. Therefore, it is a highly cost-effective approach to improve the performance of MFCs. We recommend an in-situ modification of graphite cathodes in scale-up MFCs with either H3PO4 or HNO3 to optimize MFCs' various industrial applications.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Synergy of binders and electrolytes in enabling microsized alloy anodes for high performance potassium-ion batteries

    No full text
    © 2020 Elsevier Ltd High-capacity alloy anodes are promising for increasing the energy density of emerging potassium-ion batteries (PIBs), although their practical application is hindered by their fast capacity fading due to the universal limitation of their severe volume changes. Herein, without costly nanostructure design, a simple and yet effect approach of coupling the binder and the electrolyte is introduced to maintain the electrode/interface stability of alloy anodes against large volume changes. Thanks to the physically mechanical strength of cross-linked carboxymethyl cellulose (CMC) and polyacrylic acid (PAA) binder and the chemically stable solid-electrolyte interphase (SEI) layer derived from 3 M potassium bis(fluorosulfonyl)imide (KFSI) in dimethyl ether (DME), a microsized SnSb/C anode, prepared by a scalable ball milling process, delivered a high capacity of ~419 mAh/g with capacity retention of 84.3% for 600 cycles at 50 mA/g, and 340 mAh/g with 80.7% capacity retention for 800 cycles at 1000 mA/g. These encouraging results achieved with simple electrode and electrolyte engineering can unlock the enormous potential of high capacity alloy anodes for practical application in PIBs, and can be applicable to other anode materials and other metal-ion batteries

    Synergy of binders and electrolytes in enabling microsized alloy anodes for high performance potassium-ion batteries

    No full text
    © 2020 Elsevier Ltd High-capacity alloy anodes are promising for increasing the energy density of emerging potassium-ion batteries (PIBs), although their practical application is hindered by their fast capacity fading due to the universal limitation of their severe volume changes. Herein, without costly nanostructure design, a simple and yet effect approach of coupling the binder and the electrolyte is introduced to maintain the electrode/interface stability of alloy anodes against large volume changes. Thanks to the physically mechanical strength of cross-linked carboxymethyl cellulose (CMC) and polyacrylic acid (PAA) binder and the chemically stable solid-electrolyte interphase (SEI) layer derived from 3 M potassium bis(fluorosulfonyl)imide (KFSI) in dimethyl ether (DME), a microsized SnSb/C anode, prepared by a scalable ball milling process, delivered a high capacity of ~419 mAh/g with capacity retention of 84.3% for 600 cycles at 50 mA/g, and 340 mAh/g with 80.7% capacity retention for 800 cycles at 1000 mA/g. These encouraging results achieved with simple electrode and electrolyte engineering can unlock the enormous potential of high capacity alloy anodes for practical application in PIBs, and can be applicable to other anode materials and other metal-ion batteries

    Identification and Profiling of microRNAs in Goat Endometrium during Embryo Implantation

    No full text
    <div><p>Background</p><p>MicroRNAs (miRNAs) are short, highly conserved small noncoding RNAs that had fundamental roles in post-transcriptional gene expression, and they are crucial for proper control of biological processes and known to participate in embryo implantation. However, miRNA expression profiles in the pre-receptive and receptive phases of the goat endometrium during embryo implantation are unknown.</p><p>Results</p><p>A total of 1,069 and 847 miRNAs were expressed in receptive (R) and pre-receptive (P) goat endometrium, and 632 miRNAs were co-expressed in both phases. We identified 545 (50.98%) known miRNAs in the R library and 522 (61.63%) in the P library. There were 110 up-expressed miRNAs and 33 down-expressed miRNAs in receptive endometrium compared with the pre-receptive endometrium meeting the criteria of <i>P</i>-values< 0.05. Moreover, GO and KEGG analysis of the target genes of the differentially expressed miRNAs revealed some candidate miRNAs, genes and pathways that may involve in the formation of the receptive endometrium. Based on stem-loop RT-qPCR, 15 miRNAs were detected and the results suggested that the majority of the miRNA expression data measured by Solexa deep sequencing could represent actual miRNA expression levels.</p><p>Conclusions</p><p>Our data revealed the first miRNA profile related to the biology of the goat receptive endometrium during embryo implantation, and the results suggested that a subset of miRNAs might play important roles in the formation of endometrial receptivity. Thus, elucidating the physiological roles of endometrial miRNAs will help us better understand the genetic control of embryo implantation in goats.</p></div

    Stem-loop structures of 7 selected novel miRNAs in goat.

    No full text
    <p>Note: The secondary structures were generated from the goat genome and EST sequences. The uppercase letters refer to mature sequences and were indicated in yellow. A: PC-3p-22067_41, B: PC-3p-61234_13, C: PC-5p-21385_42, D: PC-5p-21767_42, E: PC-5p-32617_26, F: PC-5p-63323_12, G: PC-5p-104298_5.</p

    miRNA-gene network of induction of apoptosis by extracellular signals (GO: 0008624).

    No full text
    <p>Note: White circular nodes represent genes, and red rectangular and pink rounded rectangle nodes represent miRNAs. The size of the nodes represents the power of the interrelation among the nodes, and edges between two nodes represent interactions between genes. The more edges a gene has, the more miRNAs that interact with it, and the more central a role it had within the network. The top five key miRNAs in the network were miR-449a, miR-182, PC-5p-6424_145, PC-5p-2673_284, and miR-138-5p. The top three key mRNAs’ serial numbers were JR128745.1 (Caspase 8, apoptosis-related cysteine peptidase (CASP8)), JR133467.1 (Y-linked ubiquitin-specific protease 9 (USP9Y)), and JR132030.1 (CD5 molecule (CD5)) in NCBI (National Center for Biotechnology Information).</p
    corecore